马学虎

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:化学工程. 工程热物理

办公地点:化工学院 化工实验楼 D-309

联系方式:辽宁省大连市凌工路2号 大连理工大学化环生学部化工学院 116024

电子邮箱:xuehuma@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Liquid film transport around Taylor bubble in a microchannel with gas cavities

点击次数:

论文类型:期刊论文

发表时间:2021-02-02

发表刊物:CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION

卷号:148

ISSN号:0255-2701

关键字:Microchannel; Gas-liquid Taylor flow; Gas cavity; Liquid film

摘要:In Taylor flow, the low velocity in liquid film around the bubbles limits the mass transfer between the bubble body and liquid phase. To overcome this deficiency, a cross-junction Microchannel with gas Cavities (MGC) is designed and processed. The restricted inert nitrogen in the gas cavities provided partial slip boundaries, which makes it distinctive from the conventional Straight Microchannel (SM). The liquid film thickness and velocity distribution in the liquid film are investigated. It is found that the bubble shape in MGC is more sensitive to the capillary number. A thicker liquid film and a sharper bubble shape can be observed under the same operating conditions. These changes lead to a larger specific surface area (about 110 % of SM) and a remarkable increment of leakage flow rate (132.2-181.1 % of SM). Then, the intensifying mechanism of liquid transport in the liquid film is analyzed by numerical simulation. The results reveal that the slip and radial fluctuation of velocity at the gas cavity interface prominently improved the liquid transport. The high specific surface area and strong renewal ability of liquid film demonstrates a great potential for mass transfer in MGC.