孙立成

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:无

其他任职:精细化工国家重点实验室副主任、大连理工大学-瑞典皇家工学院分子器件联合研究中心主任

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:应用化学. 精细化工

办公地点:大连理工大学西部校区化工实验楼E-223

联系方式:0411-84986493

电子邮箱:sunlc@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Electrical Behavior and Electron Transfer Modulation of Nickel–Copper Nanoalloys Confined in Nickel–Copper Nitrides Nanowires Array Encapsulated in Nitrogen-Doped Carbon Framework as Robust Bifunctional Electrocatalyst for Overall Water Splitting

点击次数:

论文类型:期刊论文

发表时间:2018-09-12

发表刊物:Advanced Functional Materials

卷号:28

期号:37

ISSN号:1616301X

摘要:Probing robust electrocatalysts for overall water splitting is vital in energy conversion. However, the catalytic efficiency of reported catalysts is still limited by few active sites, low conductivity, and/or discrete electron transport. Herein, bimetallic nickel–copper (NiCu) nanoalloys confined in mesoporous nickel–copper nitride (NiCuN) nanowires array encapsulated in nitrogen-doped carbon (NC) framework (NC–NiCu–NiCuN) is constructed by carbonization-/nitridation-induced in situ growth strategies. The in situ coupling of NiCu nanoalloys, NiCuN, and carbon layers through dual modulation of electrical behavior and electron transfer is not only beneficial to continuous electron transfer throughout the whole system, but also promotes the enhancement of electrical conductivity and the accessibility of active sites. Owing to strong synergetic coupling effect, such NC–NiCu–NiCuN electrocatalyst exhibits the best hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance with a current density of 10 mA cm ? at low overpotentials of 93 mV for HER and 232 mV for OER, respectively. As expected, a two-electrode cell using NC–NiCu–NiCuN is constructed to deliver 10 mA cm ? water-splitting current at low cell voltage of 1.56 V with remarkable durability over 50 h. This work serves as a promising platform to explore the design and synthesis of robust bifunctional electrocatalyst for overall water splitting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim